Error Modeling of Reduced IMU using Recurrent Neural Network
نویسندگان
چکیده
Although GNSS/IMU integration has been studied for decades, an efficient estimator of their integration has remained a challenge. In the statistical approaches, the observation model of sensors and distribution of data must be known beforehand. This paper proposes a deep learning based approach to integrate GPS and reduced IMU information. In contrast to statistical approaches, our approach learns the observation model and data distribution of sensors. We apply a Recurrent Neural Network (RNN) with one hidden layer and train our network with reduced IMU as input and GPS observations as target values. The Results show our network is properly trained and reduced IMU errors are accurately predicted for a few seconds. Keywords—Inertial Measurement Unit (IMU); Reduced IMU; Global Positioning System (GPS); Recurrent Neural Network (RNN); Long Short Term Memory (LSTM); Reduced Inertial Sensor System (RISS)
منابع مشابه
Distillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملModeling and Simulation of Water Softening by Nanofiltration Using Artificial Neural Network
An artificial neural network has been used to determine the volume flux and rejections of Ca2+ , Na+ and Cl¯, as a function of transmembrane pressure and concentrations of Ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in presence of polyelectrolytes. The feed-forward multi-layer perceptron artificial neural network including an eight-neuron hidde...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملCell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
متن کامل